Volume 4, Issue 3, September 2019, Page: 51-57
Selection of Materials for Building Desalination Plants
Michael Schorr, Department of Corrosion and Advanced Materials, Engineering Institute of Baja California, Mexicali, Mexico
Benjamín Valdez-Salas, Department of Corrosion and Advanced Materials, Engineering Institute of Baja California, Mexicali, Mexico
Ernesto Beltran-Partida, Department of Corrosion and Advanced Materials, Engineering Institute of Baja California, Mexicali, Mexico
Jorge Salvador-Carlos, Department of Corrosion and Advanced Materials, Engineering Institute of Baja California, Mexicali, Mexico
Received: Aug. 29, 2019;       Accepted: Sep. 16, 2019;       Published: Oct. 12, 2019
DOI: 10.11648/j.ijmpem.20190403.11      View  50      Downloads  20
Abstract
The primordial method to prevent, avoid and/or mitigate the deterioration of desalination plants (DP) materials is the selection of chemical and mechanical resistant materials to the DP operation conditions. Three different types of saline waters (SW) are treated in DPs: sea water, brackish water (BW) and brines, a byproduct that showed be disposed to avoid ecological problems. A DP is a complex, organized structure managing physicochemical processes: compression, filtration, evaporation, condensation, and circulation, involve diverse equipment, e.g. pumps, pipelines, turbines, heat exchangers, deaerators, storage tanks, valves, control and flow instruments. Metallic, plastic and composite materials are applied for the manufacture of these equipments. The surface of DP equipment should be kept clean and smooth applying sanitation regulation to prevent sealing and fouling difficulties. It is convenient to attach a corrosion technician at a DP to manage a corrosion laboratory, to expose corrosion test specimens of new materials and to control the corrosive factors of the DP fluids, to avoid expensive damaging corrosion occurrences. Modern DPs are built from correctly selected CRA and CRM. Application of recognized and approved technology of corrosion protection and control should provide prolonged equipment service life and freedom form corrosion. Correct operation and maintenance of a DP will assure the efficiency and economic profitability of the desalination industry (DI) rand provide prolonged equipment service life and freedom from corrosion.
Keywords
Desalination Plant, Desalination Processes, Saline Waters, Materials, Corrosion
To cite this article
Michael Schorr, Benjamín Valdez-Salas, Ernesto Beltran-Partida, Jorge Salvador-Carlos, Selection of Materials for Building Desalination Plants, International Journal of Mineral Processing and Extractive Metallurgy. Vol. 4, No. 3, 2019, pp. 51-57. doi: 10.11648/j.ijmpem.20190403.11
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
B. Chalker, “NACE international launches corrosion research consortia” vol. 59, p. 52.
[2]
G. A. Jacobson, “NACE international expert round-table, Material Performance”, 2018, vol 57, p. 36-48.
[3]
R. Hummel, “Alternative futures for corrosion and degradation research”, Potomac institute press, 2014.
[4]
World bank report, high and dry: climate change, Water and the economy, year? https://www.worldbank.org/en/topic/water/publication/high-and-dry-climate-change-water-and-the-economy
[5]
B. Valdez and M. Schorr, “Relationship of corrosion with global warming and climate change”, Corr. Sci. Tech., 2010, vol. 45, doi: 10.1179/147842210x12635511700839.
[6]
B. Valdez and M. Schorr, “Desalination, trends and technologies”, Desalination and Water treatment, vol. 42, pp. 347-348, doi: 10.1080/19443994.2012.683289.
[7]
R. M. Latanision, “Corrosion science, corrosion engineering, and advanced technologies”, Corrosion, 1995, vol. 51, pp. 270-283.
[8]
S. M. Alcocer and G. Hirart, “An applied research program on water desalination with renewable energies”, American journal of environmental sciences, 2008, vol. 4, pp. 204-211.
[9]
The Carlsbad desalination project, www.carlsbad-desal.com, 2014.
[10]
A. Livnat, “Desalination in Israel: emerging key component in the regional water balance formula”, 1994, vol. 99, pp. 299-327.
[11]
A. Tenne, “The master plan for desalination in Israel”, Israel water authority, 2020, www.water.gov.il
[12]
Y. Dreizin, “Ashkelon seawater desalination project-off-taker’s self-costs, supplied water costs, total costs and benefits”. Desalination, 2006, pp. 104-116.
[13]
A. Ophir, F. Lokiec, “Advanced MED process for most economical seawater desalination”, Desalination, 2005, vol. 182, pp. 187-198.
[14]
V. S. Frenkel, “Seawater desalination: trends and technologies”, Desalination, trends and technologies, 2011, pp. 121-128.
[15]
J. Charrach, M. Schorr, and E. Weintraub, “Corrosion and scaling behavior in dead sea basin saline waters”, Corrosion reviews, 1990, vol. 9.
[16]
M. El-Naas, “Reject brine management”, Desalination, trends and technologies, 2011, doi: 10.5772/13706.
[17]
V. Belessiotis, S. A. Kalogirou and E. Delyannis, “Desalination methods and technologies – water and energy”, Thermal solar desalination, 2016, pp. 1-19.
[18]
A. Malik, I. Andijani, M. Mobin, S. Al-Fozan, F. Al-Muaili and M. Al-Haijiri, “An overview of the localized corrosión problems in seawater desalination plants-some recent case studies”, Desalination and water treatment, 2010, vol. 20, pp. 22-34.
[19]
A. U. Malik, T. L. Prakash and I. Andijani, “Failure evaluation in desalination-some case studies” Desalination and water, sciences, 1995, pp. 116-1132.
[20]
M. Schorr, B. Valdez, J. Ocampo and A. Eliezer, “Corrosion control in the desalination industry” Desalination, trends and technologies, 2011.
[21]
CIEMAT-Center of investigations in energy, environments and technologies, “Desalination with solar energy”, www.desaline.com/almeria
[22]
The solar thermal desalination project/Almeria solar platform, www.desalination.biz
[23]
B. Chaouachi, “Solar desalination”, Desalination, trends and technologies, 2011, doi: 10.5772/13909.
[24]
Desalination and water resources plant operation maintenance and management, 2010, ISBN 978-1-84826-884-5.
[25]
A. A. Al-Karaghouli and L. L. Kazmerski, “Renewable energy opportunities in water desalination”, Desalination, trends and technologies, 2010.
[26]
M. Goosen, H. Mahmoudi, N. Ghaffour and S. S. Sablani, “Application of renewable energies for water desalination”, Desalination, trends and technologies, 2011.
[27]
N. Voutchkov, “Desalination engineering: planning and design”, 2014, ISBN 978-0071777155.
[28]
A. Malik, S. Al-Forzan “Corrosion and materials selection in MSF desalination plants”, Corrosion reviews, 2011, vol. 29.
[29]
A. U. Malik, I. N. Andijani, M. Mobin and S. Ahmad, “Corrosion behavior of materials in RO water containing 250-350 ppm chloride”, Desalination, 2006, vol. 196, pp. 149-159.
Browse journals by subject